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ABSTRACT: A p1obabilistic methodology for evaluating failure risk, assessing service life, and
establishing design parameters for elements of mechanical, electro-optical, or electronic system
has beendeveloped. In this methodology, analytical modelling based on the physics or mechanics
of failure phenomena is combined with expericnce fromtests and service to quantify failure risk.
The methodology is particularly valuable when information on which to base design analysis or
failure. prediction is sparse, uncertain, or approximate and is expensive or difficult to acquire.
Sensitivity analyses conducted as apart of the probabilistic methodology can be used to evaluate
alternative measures to control risk, such as design changes, testing, orinspections, thereby
enabling limited programresour ces to be allocated more effect ively. Tixamples of failure phe-
nomena to whit]] this methodology is applicable include. fatigue crack initiation, fatigue crack
growth, crosion,radiation damage, andwecar. The probabilistic methodology and an example

application to fatigue crack growth in a heat exchanger tube are presented.

INTRODUCTION

The assessment and management of the. risk of
failure to meetservice life, performance, or
reliability goals can be improved by using arisk
assessment approach that can incorporate in-
formation quantitatively from both experience
and analytical modeling. in the probabilistic
failure risk assessment approach presented
here, experience and analytical modeling are
usedin a satistical structure in whichuncer -
taintics about failure prediction arc quantita-
tively treated. Such probabilistic analysis can
be performed with the information available
at any time during the design, development,
verification, or service of mechanical or clec-
tronic systems to obtain a quantitative esti-
mate of failure risk that is warranted by what
is known about a failure mode. This probabi-
listic method is applicable to failure modes
whit.11 can be described by analytical models of
the failure phenomena, even when such mod-
cls arc uncertain or approximate.

By conducting risk sensitivity analyses pro-
babilistically for sclected failure modes,
sources of unacceptable failure risk can be
identificd and corrective action can be deline-
ated. Design revision, additional characteriza-

tion of loads and environments, improvement
of analytical model accuracy, andimproved
characterization of material behavior arc
among the options for controlling risk that can
be quantitatively evaluated by probabilistic
sensitivity analyses. Using results of probabil-
ity sensitivity analysis, test and analysis pro-
grams focused on acquiring information about
the most important risk drivers can be defined,
there.bycnabling limited financial resources to
be alocated more effectively to conti 01 failure.
risk.

Probabilistic failure risk assessment can be
cemployed in the, design, development, and de-
sign verification processes to avoid the com-
pounding of conscrvatisms and margins that
unnecessarily increase cost or weight. Proba -
bilistic analysis is of particular value indesign
definition and verification when uncertaintics
exist about important governing parameters or
when design conservatism and redundancy
used inthe pastmust be reducedtomect more
stringent cost, weight, or performance re-
quitements,

A genera appr1 each to probabilistic failure
tisk assessment and an application of the ap-
proach to fatigue crack growth in a heat ex-
changer tube are presentedin the following.




2 PROBARBILISTIC FAILURI: RISK
ASSESSMENT

Information from experience can be combined
with information from analytical modeling to
estimate failure risk quantitatively using the
approach shown in Figure ]. I 'his approach is
applied individually to those. failurc modes
identified for analysis. Probabilistic failure
modeling is based on available knowledge of
the failure phenomenon and of such governing
parameters as loads and material propettics,
and it provides the prior failure risk distribu -
tion of Figures 1and 2. This prior distribution
canbe modified to reficct available suc-
cess/failure datainaBaycsian statistica anal-
ysis. The probabilistic failurc 1 isk assessment
approachshowninFigures 1 and 2isdiscussed
indetailby Moore, ct d. (IDec.,1992; Nov.,
1992; June., 1992; and 1990).
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Fig. 1 Probabilistic failure risk asscessment

1 ixperience can include physical parameter
informationin additiontosuccess/failure data.
Information about physical parameters can be.
derived from measurements taken during, tests
o1 service, from analyses to bound or charac -
terize parameter values, from app licable expe-
rience with similar systems, or fromlaboratory
tests. Mcasurements of physical parameters
used in analytical modcling, ¢.g., temperaturcs
and loads, can be an important information
source in failure risk assessment. Physical pa -
rameter information is incorporatedinto
probabilistic failure modeling and is reflected
inthe priot failure risk distribution.

Success/failure data can be acquired from test-
ing or service experience. The failure risk distri-
butionresulting from the combination of the prio
distribution and the success/failum data is tile.
description of failure risk which is warranted by
the information available. As additional informa-
tionreparding poverning physical parameters be-
comes available it can be incorporated into

analytical modeling to obtain arevised prioi
failure risk distribution. Additional informa-
tioninthe formof success/failulc datacanbe
processed by tile. Bayesian statistical analysis
of Tigure 1 to update the prior failure risk
distribution using the procedurce give.ll by
Moorc,ctal.(June, 1992 and 1990).
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Fig. 2 Probabilistic failure modeling

The analysis procedures used in probabilis-
tic failure modeling, shown in Figure 2, arc
directly derived from deterministic methods
for analyses of failure modes which express
failure parameters, sue]] as burst pressure or
fatigue life, as a function of governing param-
cters ordrivers. Vor fatigue failure modes, the
driversinclude dimensions, loads, material be-
havior, model accuracy, and environmental
parameters such as local temperatures. The
accuracy of the models and procedures used in
probabilistic failure modeling should be pro-
babilistically described anti treated as a dijver.
Probabilistic desciiptions of model accuracy arc
based on experience in using the models and
procedures, and when available, 011 tests con-
ducted specifically to c.valuate theiraccur acy.

A driver for which uncertainty is to be con-
sidered must be characterized by a probability
distribution over the range of values it can
assume. That distr ibution expresses uncer -
tainty regarding specific driver values within
ther ange of possible values. A driverpioba -
bility distribution must represent both intrin-
sic variability of the driver anti uncertain
knowledge orlimitedinformation 011 which to
base the drivercharacterization



Stochastic drivers are characterized by
using the information that exists at the time of
analysis. If driverinformation is sparse, the
probabilistic characterization of such a driver
must reflect that sparseness. I extensive ex-
perimental measurements have been per-
formed for a driver, its nominal value and
char acterizat ion of its variability can be in-
ferieddirectly from empirical data. 1 lowever,
if little or no dircetly applicable cmpirical data
is available, anal ysis to characterize a driver oy
experience with similar or 1clated systems
must be used. Driver distributions must not
overstate the precision implied by the avail-
able information.

Some general guidelines for characterizing
stochastic drivers have emergedfrom case.
studies conducted to eate. as givenin Mooic,
ct a. (Nov., 1992 and June,, 1992). For drivers
which have physical bounds, such as controlled
dimensions or loads with physical uppet limits,
the Betadistribution parameterized with loca-
tion, shape, anti scale parameters has been
successfully used. If only bounds are known, a
Uniform distribution is appropriate. For a
driver whose variation can be thought of as
clue. totile. combinedinfluence of alarge num-
ber of smal independent effects, the Normal
distribution can be used. Past experience in
characterizing a particular driver such as a
matcrial property may suggest tile use of a
particular distribution, for example, Weibull,
Normal,orl.ognor real.

A hyper parametric structure for driver dis-
tributions has been found usefulin describing
available. ilformation about a driver. For ex-
ample, to characterize inner wall te mperature
uncertainty for the heat exchangertube, infor -
mation from engincerin g analysis was used to
establishupperandlower bounds for the mean
temperatute. In order to capturc the fact that
themeanvaiue. of temperature was not known
with certainty, the mean value was repre-
sented by a Uniform distribution between the
upper andlower bounds. This Uniform distri-
butionisthe hyperdistribution associated with
the mean temperature uncel tainty, and its pa-
rameter s are the associated hyperparamcters.

Monte Carlo simulation has been used as
the principal computationalmethodinproba -
bilistic failure modeling be.cause it is a genes al
mcthod that can be used with failure models
of any complexity. Continually incicasing com-
puter power due to improving hardware and
software is steadily expanding the practical

application of Monte Carlo simnulation. Liffi-
cient Mont ¢ Carlo techniques can be used to”
reduce the number of simulation trials when
computational time is an issue. Certain analy-
sis methods such as finite-element structural
models, may be too computationally intensive
for practicat usc in Monte Carlo simulation.
However, the output of these models canbe
represented as response sul-faces over the
range of variation of significant parameters,
sce Moore, et al.(DDec.,1992). Theuncertain -
tics of response sur face representations must
be treated as drivers if significant.

Alternative computational mcthods, for ex-
ample, FORM/SORM, scc Madsen, et al.
(198 6), may fail to give accurate results for
problemsin which significantly nonlinea
modelsarc cmployed anti driver unceitainty is
large. Computational methods are discussed
furtherby Moaore, et a. (1990).

3PROBABILISTICCRACKGROWII1
MODELING

Inthe crack gt owth analysis presented here, the
life of astructure with initial flaws which is
subjected to cyclic loading is computed pro-
babilistically. ‘The crack growth model used in
this analysis can consider loads due tovibration,
temperatuore gradient, and pressure. A Monte
Carlo simulation pr ocedure, shown in Figure 3,
was used to calculate a lifeciist[ibution.

A deterministic crack growth falure. model
is embedded within the simulation structure.
The failure model expresses crack girowth life
as a function of dirivers which maybe cithet
deterministic o1 stochastic. The drivers consist
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Fig. 3 Crack gr owth failur ¢ simulation



of gecometry, loads, envi ronumental parame-
ters, material propet tics, and accut acy factors
which account for uncertainties in the crack
growth analysis.

The generalized Forman model, NASA/JSC
(1986), was chosen as the basis for the stochas-
ti c crack growth rate model. The Forman
cquation is

da _ CO-R)"AK" [AK- Ay (D

dN [(1—R)Ke-AK 19

in which da/dN is the crack growth rate., AK is
the stress intensity factorrange, AKyy is the
thicsholdstressintensity factor range, KCis the

critical stress intensity factor, R isthe stress
ratio, and C, n, m, p, and g arc the modc]
parameters. The generalized Forman  equation
capturcs the crack growth behavior in all of the
growth rate. 1cgimes, and it can be extended to
a stochastic crack giowth rate mode.].

Fatigue crack growth rate dataabove 10°

mnl/cycle and below 107% Innl/cycle do not
exhibit a large amount of life variation. This
can be seen by examining the extensive data
sets of Virkler, et al. (1979) and Ghonem, ¢t al.
(1987) inwhich, for the same initial crack size,
the ratio between the shortest and longest life
is typically much less than two. ‘This variation
in the mid-rate region is small compared to the
lifevaliatioll that may occurduc to uncertainty
in other parameters such as AKypy, stresses,
initial crack geometry, etc. Many cmpirical
da/dN vs. AK plots foundin the literature scem
to suggest that crack growth rate datascatter is
larpe, but the apparently large scatter is an
artifact of data gathering and data reduction.
By comparing the low variability in lives to the
much higher scatter in growth ates derived for
the same datain Virkler, et al. (1979) and
Ghonem, ¢t a. (1987) it may be seen that local-
ized growth 1 ate scatter is not significant. ‘The
generalized Forman model can be easily em-
ployed to model variability of crack growthrate
in the mid-rate region by stochastically varying,
C in Equation ?, although for the reasons out-
lined above it was deemedunnecessaty.
Incontrast to the crack growthin the mid-
late. region, uncertainty in the high- and low-
growth late regions can be significant duc to
both intrinsic growth rate variability andlack
of information in these regions, This uncer-

tainty may berepresentedinterms of the val-
ues of AKy and K which are asymptotes to
the crack growth rate curve at its lower and
upper ends, respectively. Uncertainty about
these asymptotes is readily captured by using
two stochastic scale parameters AKyy and AK,.
AK71 modifies the nominal value of the lower

asymptote AKyy and Ak, shifts the, upper as-
ymptote (1 - R) K. Thus, the stochastic crack
growthrate equation is given by

da  C( - R"AK" [AK - AKyy AKT 1P (2)
_dN™ - [(1 - R)YAKc Ke - AK )9

The uncer tainty in AK74 and Ak, may be cha -
actetrized by probability distributions, o1 they
may be ticated parametrically as was done in
the analyses presented her ¢. Figure 4 shows
the effect of perturbing AKyy and AKg in the
growthrate 1quation2.

Fig. 4 1 dcescription of the stochastic crack
growth equation in log-log space

AsshowninFiguic3, themeancrack growth
rate equation, which is aninput to the crack
growth model, is typicaly determined by per-
for ming aregression on crack growth data.
The parameters C, m, n, p, and g arc estimate.c]
by alcast squares fit of the girowthrate Hqua -
tion 1. If the.l-cisuncertaiuty duc to sparseness
of data, orif the material test conditions do not
closely represent the component operating en -
vitonment, some of the other equation param-
cters may also be modeled stochastically. For
example, if crack growth rate data weie to be
only available for a single stress ratio A, the
uncertainty inm could be captured by desciib-
ing mstochastically, based on values observed
for similar matcrials.
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Fig. 5 Flowchart for crack growth calculation

4 CRACK GROWTHCAIL.CUI.A'1'10NS

The procedure used for calculating crack
growth is shown in Figure 5. In the heat ex-
changer tube, vibrationloads are primarily1c-
sponsible for crack growth which can result in
structural failure. The vibration environment
was represented by powet spectral density
(1's1)) envelopes.

The analyses of loads and stresses for the
heat exchanger tube. anti the crack growth cal-
culations are described in detail by Moore, ct
al. (Dee., 1992 and June, 1992) and summa-
rized by Sutharshana, et a. (1991), A stress
history duc to dynamicload sources was syn -
thesized from the PSD envelopes. The stress
cycles were obtained by peiforming a cycle

count cm the synthesize.c! stress time history
using the 1ainflow cycle counting method. The
load interaction in growth calculations w as
accountcd for by using the. generalized
Willenborg retardation model, sce Gallage
(1974).

Since the traditional cycle-by-cyc]c crack
g rowth life calculation is computationally in-
tensive, an extremely fast yet accurate block-by -
block approach first introduced by Brussat
(1974) was used. [ the block approach, ablock
growth rate da/df3 is calculated at distinct
crack lengths, starting from the initial crack
length gto the final length a;, by summing the
crack growthrates da/dN from Fquation 2 that
correspond to AKyy and Ry for cach stress
levelin the, load block, as follows:

cia & da )
de >J W) i
it [

in which n; is the number of cycles at the ith
stress level. The life is computed by numeri-
cally integrating the inverted rate. per block
between the initid andfinal crack length. The
life in seconds is

8, (4)
|- A, 1l .da
- ofgro [ dayy
4

inwhich Agro is the uncertainty in the growth
calculation and 7 is the lIength of a load block
in scconds. This calculation is performed as a
summation over unequally divided Ngg, crack
lengths, as follows:

Nen ©)
S Aa

J=1

The standard stress intensity factor solution
fora semi-clliptic crack ina finite width plate
subject to axial and bending stresses was em-
ployed to calculate AK for the heat exchanger
tube. The temper atu re difference across the
wall of the tube (cold inside and hot outside)
induces significant ther mal stresses over the
thickness, whose variation across tube thick-
ness is similarto thatof bending stresses. Stan -
dard stress inte nsity factor solutions for



cylinders with radial cracks, subjected to bend -
ing stresses over the thickuess, are not avail-
able. The Sll'expressions usedin this analysis
ate. givenin NASA/ISC (1986).

(rack growth ratedata from Rocketdyne
(1989) were available for theheatexchanger
tube material at stress ratios off{ = 0.16, 0,7,
and 0.9. This crack growth data set was ¢In -
ployed to derive the parameters of the stochas-
tic Formanmodel given above.

5 DESCRIPTION OF DRIVERS

I1om among the load, dimension, and envi-
ronment parameters that appearin the ciack
growth analysis for the heat exchanger tube,
nineteen para meters were desctibed prob-
abilistically. Five of these parameters account
for analysis model accuracy. These parame-
ters, i.e, drivers, andtheirprobability distiibu -
tions are given in‘lable 1.

The initial crack shape aspectratio a/c was
repr esented by a Uniform distiibution with
cnd points of 0.2 and 1.0. The crack geometry
was then defined by trecating initial crack
length &; paramctrically. 1 ife was simulated
with the value of a;fixed at 0.025 mm, 0.063 mm,
0.13mm,and0.19111111. The crack shape distri-
bution was based onan assessment of the crack
aspect ratios that couldresult from tile heat
exchanger manufacturing process.

The heat exchanger tube wall thickness is
nominally 0.312mm, which leads to the con-
cernthat “shorl crack” behavior may berele-
vant. Short crack growthrate curves have been
obscived by Mortis, et al. (1983) not to have
definite thresholds. If athieshold exists, it isa
conservative assumption for the linear seg-
ment of the curveinthe mi(i-rate region to be
extrapolated down into the thresholdregion.
Fixing AK741 = O in the stochastic Torman
equation accomplishes this, as shown in Figure
4. Analyses were performed with values of
AKyy at 0.0,0.1,0.2, etc., tostudy the impact of
tile thresholdlocation. since. growthis inthe
low 1ate region, the driver Ak, is not relevant,
and its value was fixed at unity.

The stiess intensity factor calculation accu -
racy factor Agjr accounts for the C1101 in tile
standard stress intensity factoi solution and
the uncertainty associated with employing a
finite width plate solution for a crack in a

6

Table 1. Description of drivers usedin the
heat exchanger tube analysis
D RIVER DISTRIBUTION RANGE
Initial crack size a;, mm Fixed 0.02%10
0.19
Initial crack shape afc Uniform 2t0 1.0
‘Inreshold stress intensity Lo - 0.0t0 1.0
factor range accuracy
filCl()rAK'”]
Fracture toughness Fixed 00t01.0
accuracy factor AK,
Random load adjustment Normal (4, 07) -
factor ADIHNI)OM u=0.77
e=012 |
Sinusoidal load Normal 0‘:02) -
adjustment factor u=071
ADgnusomwar, o=0. '747
Acrodynamic load factor Uniform .5101.5
A,1 ERODYN
Acrostatic load factor Uniform Blo 1.2
'{Alfl\'().ﬂ'l
Inner walltempe rature Normal 01) -
1:(°K) # ~ Unilorm (270,370)
o ~ Uniform (16.1,31.4)
Outer wall temiperature Normal c,1) -
1, (°K) w0~ Uniform (444, 5052
o ~ Uniforin (26.7,27.5)
Internal pressure pi, Mpa Normal (i, 02
{,; ~ U (3623, 2)8.8)}
o= 0476
L 1
Inner diamcter Dy, mm Beta ?,g) 4.7910
p= . 4.86
O - Uniform (5, 20)
P Reta(p, ) 0.2910
Wall thickness f, mm p=27 040
0- uniform (.5, 20)
Lynamicsiress analysis Uniform 8m12
accuracy factor ADYN,,,
Static stress analysis Uniform .9101.1
accuracy factor 'IS'I;,,
Stress intensity factor Uniforn .9101.1
calculation accuracy factor
A:ij
Growth Calculation Uniform In V210
accuracy factor )»glo In 1.75
Ncuber'srule accuracy Uniform .6101,4
(uctor Aneu
Weld c~f[.set Stress Uniform Bilo1l?

concentration accuracy
factor /1()],'[

cylinder. A Uniformdistribution was used for
Agis with a range. of 0.9 to 1.1. The growth



calculation accuracy factor A, accounts for

uncertainticsin the block-by-block growth cal-
culation and in transformation of a variable
amplitude stiesshistory to aconstantamplitude
stiess vs. number of cycles table using rainflow
counting. ividence in the literaturcindicates
that factors of two betwecen the calculated crack
growth life and tests arc appropriate. Since
crack propagation is the result of a number of
multiplicative events, the disuilmtionon/lgm
was specificd inlog space. A Uniform distribu-
tion was used with the lower bound set at
In(1/2).In ordeifor the mean value co fag, to
be 1.0, the upperbound was set at 111(1.75).

The Beta distributions character izing heat
cxchanger tube dimensions in Table Lare pa -
rameterized by location, scale, andrange pa-
rameters which are given asp, 0, and the end
points of the range, respectively.

61-U',SIJ1 /1S

Figurc 6 presents the left-hancl tail of the sim-
ulated failure. distribution for the heat ex-
changer tube.. The ordinate of these graphs is
the failure probability. The abscissa is the life
inscconds for crack growth through the thick-
ness of the heat exchanger tube. Figure 7
illustrates the effects of the crack growth
threshold andinitial crack size onlife at a ().()01
failure. p1obability.
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TheresultsinFigure 6 are given for aninitial
crack size a; = 0.13nInl Aky4=0. T he. left
curve labeled “al] driver variation”is for a
simulation where al the drivers were allowed
to vary exceptay, AKzthand AKg. The “nominal”
valuec shown onthe graphis foran analysis with
al the drivers fixed at nomina values. Mea -
surcs of the relative importance of individual
drivers ate given in the upper left corncr in
Figure 6. These were obtained by finding mar-
ginal cffects of driver uncertainties using sev-
cral sensitivity 1 uns, where onedriver was
allowed to vary while the rest were held at
nominal values. The crack shape and the
growth calculation aceuracy arc the most im-
portantdrivers with a 90% contribution to
dectease in life. The right-hand curve in Fig-
ure 6 shows the shift to theleft due to the
vatiation in the crack shape and growth calcu -
lation accuracy.

7 CONCILUSIONS

For this heat exchanger tube application, the
uncettainty clue to incomplete knowledge and
limited information concerning the accurate
characterization of analysis models and phys-
icaldriver parameters have a muchlargerim -
pact on failurc risk than dots any intrinsic
parameter variability. The information avail-
able was insufficient to meaningfully charac-
terize initial ¢1 ack size and threshold stress
intensity factor for “shor t cracks’. Consc-
quently these important drivers were t1 cated



parameti ically in order to show their impact
on crack growth life and to better define infor-
mation that is needed toreduce falure risk. A
tradeoff between knowledge of initial crack
size. and knowledge of short crack threshold
stress intensity factor, conditioned on the un -
cc 11ainties in other drivers, can be inferr ed
from the results shown in Figure *7. For acon-
servative “short crack” threshold Aky,, = O)

assumption, inspection techniques that can
detect 0.13mm initial cracks with high reliabil-
ity arcrequired to achicve a life of about
3x 107 seconds at 0.001 failure probability. On
the other hand, if more representative crack
g1 owth datacanbe generated that can 1¢liably
establish a nonzecro growth threshold
Ak, > 0), then therequirements onthe in-

spection may be relaxed while achicving the
same life at 0.001 failure probability.
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